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Abstract The dynamic form of the Michaelis–Menten enzymatic reaction equations
provides a time-dependent model in which a substrate S reacts with an enzyme E to
form a complex C which is in turn converted into a product P and the enzyme E .
In the recent paper [Mallory and Van Gorder in J Math Chem 52: 222–230, 2014],
it was shown that this system of four nonlinear equations can be reduced to a single
nonlinear differential equation, which is simpler to solve numerically than the system
of four equations. Qualitative properties of solutions were discussed, and stability
results were given. In the present paper, we apply the optimal homotopy analysis
method to the solution of this problem in order to obtain quantitative results. To do so,
we transform the governing equation into a form that is more amenable to analysis.
From the homotopy solutions, we are then able to study the effects of the model
parameters on the solutions to the dynamic Michaelis–Menten enzymatic reaction
equations. The results demonstrate the accuracy and efficiency of the approach, with
residual errors of 10−6–10−10 by considering relatively few iterations of the method.
Therefore, the optimal homotopy analysis method is shown to be a rather useful tool for
constructing analytical solutions to the dynamic Michaelis–Menten enzymatic reaction
equations.
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1 Introduction

The dynamic form of the Michaelis–Menten enzymatic reaction model [1] reads

d S

dt
= − k1 E S + k−1C ,

d E

dt
= − k1 E S + (k−1 + k2)C ,

dC

dt
= k1 E S − (k−1 + k2)C ,

d P

dt
= k2C , (1.1)

where S(t) is the concentration of a substrate, E(t) is the concentration of an enzyme,
C(t) is the concentration of the resulting complex, and P(t) is the concentration of the
resulting product. This is the time-dependent form of the model originally proposed by
Michaelis and Menten [1], which is used to study enzyme kinetic reactions. Under this
framework, a substrate S reacts with an enzyme E to form a complex C which is in turn
converted into a product P and the enzyme E ; the schematic is E + S � C → E + P .
Note that:

(i) k1 > 0 is the rate of reaction governing the production of the complex from the
substrate and the enzyme;

(ii) k−1 > 0 is the rate of reaction governing decomposition of the complex to the
substrate and enzyme, and;

(iii) k2 > 0 is the rate of reaction governing the breakdown of the complex into the
product and the enzyme.

Let us label the initial conditions as S(0) = S0, E(0) = E0, C(0) = 0, and P(0) = 0.
One can always introduce scaling of the functions and parameters so that the system
(1.1) is non-dimensional.

A variety of solutions and solution methods have been brought to bear on the
Michaelis–Menten enzymatic reaction model. Much of what is considered in the liter-
ature is either static or quasi-static solutions. Many authors have considered a quasi-
steady state assumption [2–5]. Golicnik [6] presented solutions to a Michaelis–Menten
model in terms of the Lambert W (x) function. Later, the time-dependent problem was
also considered by Golicnik [7]. Abu-Reesh [8] derived analytical equations for the
optimal design of a number of membrane reactors in series performing enzyme cat-
alyzed reactions described by Michaelis–Menten kinetics with competitive product
inhibition.

For the time-dependent dynamic models, closed-form solutions are not possible,
and therefore numerical or approximation methods are needed. The homotopy per-
turbation method has been applied to the study of enzyme reaction models [9,10].
However, such solutions may or may not converge since the homotopy perturbation
method permits no way to control the error inherent in the approximations (see, for
instance [11,12], for examples of when the homotopy perturbation method does not
converge). Some limitations were discussed in [10], and it was shown that the homo-
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topy perturbation method solutions are good for some parameter regimes and poor
for others. On the other hand, the homotopy analysis method often can be made to
converge, since it includes a type of convergence control parameter. Recently, Motsa
et al. [13] considered this approach, and obtained homotopy analysis solutions through
a hybrid spectral approach. However, no comprehensive error analysis was conducted
on how to best select the convergence control parameter, h.

In a recent paper, Mallory and Van Gorder [14] were able to reduce the nonlinear
differential equation system (1.1) into a single nonlinear ordinary differential equation.
Using this equation, they were able to succinctly study solutions of (1.1) qualitatively.
They were also able to determine stability properties of solutions to (1.1), demonstrat-
ing that such solutions tend toward equilibirum values (for large time) and that such
solutions are globally asymptotically stable.

The focus of the present paper is to conduct a more quantitative analysis of the sys-
tem qualitatively studied in [14]. To do so, we apply the homotopy analysis method
(see [15–20]). This method has proven useful for describing analytical solutions to
a number of interesting problems: some specific examples include nonlinear equa-
tions arising in heat transfer [21–24], fluid mechanics [25–32], solitons and integrable
models [33–36], nanofluids [37,38] and the Lane–Emden equation which appears in
stellar astrophysics [39–42], to name a few areas. One modern development on the
method would be the use of the convergence control parameter in order to minimize
the error inherent in the approximate analytical solutions. This method is referred to
as the optimal homotopy analysis method, and this approach has recently been used to
find error-minimizing approximate solutions to a variety of nonlinear equations (see
[43–48]). Using this approach, we shall be able to obtain analytical approximations
with minimal error. Often, the residual error can be reduced to between order 10−6

and order 10−10 after relatively few iterations of the method.
The paper is organized as follows. In Sect. 2, we give a background discussion and

derivation of the single ODE we are interested in solving. We shall put the equation
derived in Mallory and Van Gorder [14] into a specific form which will aid in our
computational approach. Then, in Sect. 3, we obtain accurate approximate solutions
via the optimal homotopy analysis method. These solutions are shown to have minimal
residual errors even after relatively few terms are calculated. Therefore, the computa-
tional approach is both accurate and efficient for solving the problem. In Sect. 4, we
give some concluding remarks.

2 Background and derivation of the governing equation

Consider Eq. (2.5) in Mallory and Van Gorder [14], which puts the system (1.1) into
a single second order nonlinear ordinary differential equation. For completeness, we
include the equation here:

d E

dt
= (k1 E(t) + k−1 + k2)(E0 − E(t)) − k1S0 E(t)

+ k1k2 E(t)
∫ t

0
(E0 − E(τ ))dτ. (2.1)
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This is an equation with a derivative and an integral in the unknown function E(t). To
remove the non-locality inherent in having an integral term, we may define

G(t) =
∫ t

0
(E0 − E(τ ))dτ . (2.2)

Then, G ′(t) = E0 − E(t) and G ′′(t) = −E ′(t), so Eq. (2.5) of Mallory and Van
Gorder [14] reduces to an equation of the form

1

k1
G ′′ + (E0 + S0 + Km)G ′ + k1k2 E0G − k1G ′2 − k1k2GG ′ = k1 E0S0 , (2.3)

where

Km = k−1 + k2

k1
(2.4)

is the Michaelis constant. Making the change of variables

G(t) = g(T )

k1
, T = k1t , (2.5)

we have

g′′ + (E0 + S0 + Km)g′ + k2 E0

k1
g − g′2 − k2

k1
gg′ = E0S0 . (2.6)

For the initial conditions, note that

G(0) =
∫ 0

0
(E0 − E(τ ))dτ = 0 (2.7)

and

G ′(0) = E0 − E(0) = E0 − E0 = 0 , (2.8)

therefore, g(0) = 0 and g′(0) = 0. Hence we shall solve the initial value problem

g′′ + (E0 + S0 + Km)g′ + k2 E0

k1
g − g′2 − k2

k1
gg′ = E0S0 ,

g(0) = 0 , g′(0) = 0 . (2.9)

Regarding the homotopy treatment, we should define the nonlinear operator by

N [g] = g′′ + (E0 + S0 + Km)g′ + k2 E0

k1
g − g′2 − k2

k1
gg′ − E0S0 . (2.10)

The auxiliary linear operator should be chosen so that solutions decay as T → ∞.
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One may recover the meaningful solution by

E(t) = E0 − G ′(t) = E0 − d

dt

g(k1t)

k1
= E0 − g′(k1t) . (2.11)

Note that E(0) = E0 (g′(0) = 0) and E(t) → E0 as t → ∞ (if g′ → 0 as T → ∞).
For reasonable parametric values, the function g′ should attain a maximal value, and
then decay back to zero for large T . This is consistent with the numerical results in
the literature.

Once g is found, we can recover the other quantities of interest, which can be found
by

C(t) = g′(k1t) , (2.12)

S(t) = S0 − g′(k1t) + k2

k1
g(k1t) , (2.13)

P(t) = k2

k1
g(k1t) . (2.14)

From these solutions, we have the relation

S(t) + C(t) = S0 + P(t) . (2.15)

3 Solutions via homotopy analysis method

In order to solve Eq. (2.9), we turn to the homotopy analysis method (HAM) [15–20].
The main idea governing HAM is that the solution to a nonlinear equation can be
expressed as an infinite sum of solutions to several linear sub-problems, where each
sub-problem is associated with a specific deformation equation. This greatly aids in
our ability to compute solutions to such problems.

We define the nonlinear operator N as

N [g(T )] = d2g

dT 2 + (E0 + S0 + Km)
dg

dT
+ k2 E0

k1
g − dg

dT

2

− k2

k1
g

dg

dT
− E0S0 ,

(3.1)

which is just the nonlinear problem (2.9) we are interested in. Using the embedding
parameter q ∈ [0, 1], a linear homotpy is constructed between the two operators L
and N , such that

(1 − q)L[ĝ(T ; q) − g0(T )] − qhN [ĝ(T ; q)] = 0, (3.2)

where L is an auxiliary linear operator of our choosing, h �= 0 is an auxiliary parameter,
g0 is an initial guess, and ĝ(T ; q) is defined by
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ĝ(T ; q) = g0(T ) +
∞∑

n=1

gn(T )qn . (3.3)

Notice, at q = 0 and q = 1, we have ĝ(T ; 0) = g0(T ) and ĝ(T ; 1) = g(T ),
respectively. As q increases from 0 to 1, the solution ĝ(T ; q) varies continuously
from the initial guess, g0(T ), to the exact solution, g(T ). Therefore, the HAM solution
which satisfies (2.9) takes the form

g(T ) = g0(T ) +
∞∑

n=1

gn(T ). (3.4)

For our problem, we may select the auxiliary linear operator L as

L[g(T )] = d2g

dT 2 + (E0 + S0 + Km)
dg

dT
+ k2 E0

k1
g, (3.5)

and the initial guess to be the solution to L[g(T )] = 0, namely g0(T ) = 0. To
obtain higher order equations of our HAM solution, we recursively solve the so called
mth-order deformation equation

L[gm(T ) − χm gm−1(T )] = h

(m − 1)!
[

dm−1 N [ĝ(T ; q)]
dqm−1

]
q=0

, (3.6)

subject to the conditions gm(0) = 0 and g′
m(0) = 0, where χm is defined by

χm =
{

0, m � 1
1, m > 1.

(3.7)

Finally, an M th-order approximate solution can be obtained by the partial sum

g(T ) ≈ gM (T ) = g0(T ) +
M∑

n=1

gn(T ). (3.8)

By applying Eqs. (3.6) and (3.7), the first few terms of the HAM solution to (2.9) are

g1(T ) = −h
S0k1

k2

×
[

1 − (α cosh ( 1
2αT ) + (E0 + S0 + Km) sinh ( 1

2αT ))e− 1
2 (E0+S0+Km )T

α

]
(3.9)

g2(T ) = −(h2 + h)
S0k1

E0k2

×
[

1 − (α cosh ( 1
2αT ) + (E0 + S0 + Km) sinh ( 1

2αT ))e− 1
2 (E0+S0+Km )T

α

]
(3.10)
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where α denotes the composite parameter

α =
√

(E0 + S0 + Km)2 − 4k2 E0

k1
. (3.11)

Higher order terms of the series in (3.4) can be easily obtained by means of computer
algebra system. For computational purposes, we utilize the Mathematica package
BVPh 2.0, developed by Liao. For a more detailed description of the BVPh 2.0 package,
the reader is referred to Liao [17].

3.1 Minimization of residual error

In treating q ∈ [0, 1] as a small parameter, ĝ(T ; q) can be expanded in a Taylor series
about q to obtain (3.3). The convergence of this series is dependent on the auxiliary
parameter h. Although h has no physical meaning in the frame of the problem, it has
been shown by Liao [18] that careful selection of h can control the region and rate
of convergence of the HAM solution (3.4). The power of HAM lies in the flexibility
of choosing the auxiliary parameters so as to guarantee convergence of the HAM
solution. Recall that if (3.3) is convergent at q = 1, then we recover the solution to
the original Eq. (2.9).

A straightforward way to select the optimal auxiliary parameter h is to examine the
squared residual error. Recall in the previous section, we truncate our HAM solution
up to some M th term. Let

εM (T ∗) = |N [gM (T )]|
∣∣∣∣
T ∗

, (3.12)

denote the residual error of our M th-order approximate HAM solution, taken at some
time T ∗ in the domain. Then the sum of the residual error taken over the whole domain
is

Rε(T ) =
∫ ∞

0
|N [gM (T )]|dT . (3.13)

Is it often the case that the integration in (3.13) is too CPU intensive to compute, even
for low order approximations. In practice, we evaluate the sum of the squared residual
given by

EM (h) =
∫ T ∗

0
(N [gM (T )])2dT, (3.14)

taken up to some stopping time T ∗. Therefore, the minimum of the squared residual
EM corresponds to the optimal choice for the auxiliary paramter h and thus the optimal
approximate HAM solution. For a more in depth look at the squared residual error
technique, the reader is referred to [20,47,48].
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Fig. 1 Comparison of the HAM and numeric solutions for the case where k−1 = k1 = k2 = 1 and
E0 = S0 = 1

3.2 Physically relevant numerical examples

In order to demonstrate the usefulness of the homotopy analysis method for solving
the nonlinear equation (2.9), we shall give several specific examples. The system (1.1)
can be scaled so that the initial quantities S0 and E0 may be taken to equal unity.
Therefore, the parameters of interest are k−1, k1 and k2, so we shall focus on these
three parameters.

In Fig. 1, we provide a comparison of the HAM solution to a numerical solution
obtained via the Runge–Kutta–Felhberg 4–5 method (denoted RKF45, see [49]), for
the case where k−1 = k1 = k2 = 1 and E0 = S0 = 1. A plot of the corresponding
residual error is given in Fig. 2, and this plot demonstrates that the error inherent in
the approximation sharply decreases as additional terms are added to the analytical
approximation. HAM solutions are plotted in Figs. 3, 4, and 5 to study the effects of
varying the reaction rate parameter k. The residual error curves are included in Figs. 6
and 7 in order to illustrate the effect of addition additional terms in the HAM solutions.
Optimal values of the convergence control parameter are given in Table 1, along with
values of the minimized sum of squared residual errors. For all plots considered, we
take the domain 0 ≤ T ≤ 20. The maximal time value T ∗ = 20 is used for calculating
the residual errors.

From the numerous examples considered here, we see that the optimal homotopy
analysis method allows us to construct rather accurate solutions with relatively few
iterations. While we have solved the problem (2.9), note that a solution g to this prob-
lem encodes all of the information needed to recover the solutions S(t), E(t), C(t)
and P(t) for (1.1). Indeed, g can be used in equations (2.11)–(2.14), respectively, in
order to obtain each of these functions.

4 Conclusions

We have solved the nonlinear equation (2.9) governing the transformed dynamic form
of the Michaelis–Menten model by applying the optimal homotopy analysis method.
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Fig. 2 Plot of the squared residual error versus order of approximation for the case where k−1 = k1
= k2 = 1 and E0 = S0 = 1
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Fig. 3 Variations of the HAM solutions to Eq. (2.9) for different values of k2 and k−1. We fix the parameter
value k1 = 1 and E0 = S0 = 1
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Fig. 4 Plot of the squared residual error versus order of approximation for various values of k2 and k−1.
We fix the parameter value k1 = 1 and E0 = S0 = 1
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Fig. 5 Variations of the HAM solutions to Eq. (2.9) for different values of k1 and k−1. We fix the parameter
value k2 = 1 and E0 = S0 = 1
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Fig. 6 Plot of the squared residual error versus order of approximation for various values of k1 and k−1.
We fix the parameter value k2 = 1 and E0 = S0 = 1
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Fig. 7 Variations of the HAM solutions to Eq. (2.9) for different values of k1 and k2. We fix the parameter
value k−1 = 1 and E0 = S0 = 1
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Table 1 Optimal value of the
convergence control parameter
h∗ and minimum squared
residual EM on the domain
0 ≤ T ≤ 20 for different values
of k

k1 k2 k−1 h∗ E10

1.0 0.5 0.5 −1.05997 1.560 × 10−6

1.0 0.5 1.0 −1.04993 1.785 × 10−7

1.0 1.0 0.5 −1.04689 1.257 × 10−7

1.0 1.0 1.0 −1.03853 1.988 × 10−8

1.0 1.0 0.5 −1.04689 1.257 × 10−7

1.0 1.0 1.0 −1.03853 1.988 × 10−8

0.5 1.0 0.5 −1.02919 8.801 × 10−10

0.5 1.0 1.0 −1.02251 8.876 × 10−11

1.0 0.5 1.0 −1.04993 1.785 × 10−7

1.0 1.0 1.0 −1.03853 1.988 × 10−8

0.5 0.5 1.0 −1.02835 1.100 × 10−9

0.5 1.0 1.0 −1.02251 8.876 × 10−11

From the results shown here, we find that the resulting analytical solutions have rather
low residual errors after relatively few terms are computed, highlighting the accuracy
and efficiency of the technique. Using the homotopy solutions g to Eq. (2.9), we may
recover physical solutions for each of the quantities of interest using Eqs. (2.11)–(2.14).
From the stability results of [14], these solutions will be asymptotically stable.

Unlike other methods used to solve the dynamic Michaelis–Menten model, the
optimal homotopy analysis method allows one to control the residual error inherent
in the approximating solutions to the dynamic Michaelis–Menten model. To this end,
we have included a subsection outlining the error analysis for the method. For all
parametric values considered, the accuracy of the method improves by a factor between
5 and 10 on each iteration. Therefore, by adding additional terms to our expansion, and
by picking the convergence control parameter, h, so that residual error is minimized,
we are able to construct rather accurate solutions.

Since we are only working with a single nonlinear ordinary differential equation,
we only need to minimize the residual errors for one equation. If one were to attempt
to solve (1.1) directly, one would need to construct four homotopies with four dis-
tinct convergence control parameters, making the minimization of error much more
challenging (see [46] for a demonstration of this point). This in turn lends validity to
the approach of [14], where a single equation was derived to represent the dynamic
Michaelis–Menten model. Indeed, considering such a transformed form of the model
enables us to more accurately construct analytical solutions. As mentioned before,
once constructed, the solution g(T ) can then easily be mapped into solutions for the
unknown functions S(t), E(t), C(t) and P(t).

The methods employed here are rather useful for solving the nonlinear equation
(2.9) governing the transformed dynamic form of the Michaelis–Menten model ana-
lytically. However, the methods are certainly not specific to this model and could
prove useful in other areas of mathematical chemistry. Already, this optimal homotopy
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approach has been applied to many problems in mathematical physics, fluid dynam-
ics, and engineering. Further application of the optimal homotopy analysis method
in various areas of mathematical chemistry could shed light on various biochemi-
cal processes which are governed by complicated systems of equations for which no
closed-form exact solutions can be found.
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